THE TIME TRANSFER AND SYNGE WORLD FUNCTIONS IN RPS

Anna Heffernan European Space Agency Christopher Gerekos Université Libre de Bruxelles

Outline

- Motivation
- Timing corrections
- Time transfer function
- Synge world function
- Simulating null coordinates
- Solving inverse problem
- Still to come

Motivation

GNSS – Global navigation satellite system

GPS, GLONASS, GALILEO, BEIDOU

$$c^{2}(t_{P} - t_{i}) = (x_{i} - x_{P})^{2} + (y_{i} - y_{P})^{2} + (z_{i} - z_{P})^{2}$$

- RPS a fully relativistic positioning system
- High accuracy with no corrections
- Autonomy no ground tracking required
- Enables measurements of gravitational field

Timing corrections

Source Moving (to the left)

 $\wedge \wedge \wedge$

Source Stationary

ΛΛΛ

- Proper time(\u03c6): time indicated by an on-board clock
- Coordinate time (t): time indicated by a clock very far away from any mass
- Requirement: to determine the time of flight of light rays
 through curved spacetime

(ω)

Time transfer and Synge world function relationship

$$\sigma(t, x^{i}, t', x^{i'}) = \frac{1}{2} (\lambda_{1} - \lambda_{0}) \int_{\lambda_{0}}^{\lambda_{1}} g_{ab}(x) \frac{dx^{a}}{d\lambda} \frac{dx^{b}}{d\lambda} d\lambda$$
$$\sigma(t, x^{i}, t - \mathcal{T}(x^{i}, x^{i'}), x^{i'}) = 0$$

Time transfer function

Time transfer function

$$\frac{1}{c} \int_{x_B}^{x_A} dx^0 = t_B - t_A = \mathcal{T}_e(t_A, \mathbf{x}_A, \mathbf{x}_B) = \mathcal{T}_r(\mathbf{x}_A, t_B, \mathbf{x}_B)$$
$$\mathcal{T}(\mathbf{x}_A, \mathbf{x}_B) = \frac{|\mathbf{x}_A - \mathbf{x}_B|}{c} + \sum_{n=1}^{\infty} \mathcal{T}^{(n)}(\mathbf{x}_A, \mathbf{x}_B)$$
$$\mathbf{x}_B$$

Post Minkowskian metric

$$ds^{2} = \mathcal{A}(r) (dx^{0})^{2} - \mathcal{B}^{-1} (dr^{2} + r^{2} d\theta^{2} + r^{2} \cos \theta^{2} d\phi^{2})$$
$$\mathcal{A}(r) = 1 - 2\frac{m}{r} + 2\beta \frac{m^{2}}{r^{2}} - \frac{3}{2}\beta_{3}\frac{m^{3}}{r^{3}} + \beta^{4}\frac{m^{4}}{r^{4}} + \sum_{n=5}^{\infty} \frac{(-1)^{n}n}{2^{n-2}}\beta^{n}\frac{m^{n}}{r^{n}}$$
$$\mathcal{B}^{-1}(r) = 1 + 2\gamma \frac{m}{r} + \frac{3}{2}\epsilon \frac{m^{2}}{r^{2}} + \frac{1}{2}\gamma_{3}\frac{m^{3}}{r^{3}} + \frac{1}{16}\gamma_{4}\frac{m^{4}}{r^{4}} + \sum_{n=5}^{\infty}(\gamma_{n} - 1)\frac{m^{n}}{r^{n}}$$
$$\mathcal{U}(r) = \frac{1}{\mathcal{A}(r)\mathcal{B}(r)} = 1 + 2(1 + \gamma)\frac{m}{r} + \sum_{n=2}^{\infty}2\kappa_{n}\frac{m^{n}}{r^{n}}$$

Quasi Minkowskian light rays

$$\begin{cases} x^0 = ct_a + \xi |\mathbf{x}_B - \mathbf{x}_A| + \sum_{n=1}^{\infty} X^0_{(n)}(\mathbf{x}_A, \mathbf{x}_B, \xi) \\ \mathbf{x} = \mathbf{z}(\xi) + \sum_{n=1}^{\infty} \mathbf{X}_{(n)}(\mathbf{x}_A, \mathbf{x}_B, \xi) \end{cases}$$

Time transfer function

Solving for dt

$$cdt = \frac{J}{E}d\phi \pm \frac{1}{r}\sqrt{r^{2}\mathcal{U}(r) - \left(\frac{J}{E}\right)^{2}}dr$$

Time transfer function

$$c\mathcal{T}(r_A, r_B, \mu) = \frac{J}{E}(\phi_A - \phi_B) + \int_{r_A}^{r_B} \frac{1}{r} \sqrt{r^2 \mathcal{U}(r) - \left(\frac{J}{E}\right)^2} dr$$

Linet & Teyssandier, 2014

Expanded terms

$$\frac{J}{E} = r_c \left[1 + \sum_{n=1}^{\infty} \left(\frac{m}{r_c} \right) q_n \right] \qquad r_c = \frac{r_A r_B}{R_{AB}} \sin(\phi_A - \phi_B)$$

$$q_n = -c \left(\frac{r_c}{m}\right)^n \frac{\sin\left(\phi_A - \phi_B\right)}{r_c} \frac{\partial \mathcal{T}^{(n)}(r_A, r_B, \mu)}{\partial(\cos\phi_A - \phi_B)}$$

$$R_{AB} = \sqrt{r_A^2 + r_B^2 - 2r_A r_B \cos\left(\phi_A - \phi_B\right)}$$

Time transfer function

The time transfer function

$$\mathcal{T}(\mathbf{x}_{A}, \mathbf{x}_{B}) = \frac{|\mathbf{x}_{A} - \mathbf{x}_{B}|}{c} + \sum_{n=1}^{\infty} \mathcal{T}^{(n)}(\mathbf{x}_{A}, \mathbf{x}_{B})$$

$$\mathcal{T}^{(1)}(r_{A}, r_{B}, (\phi_{A} - \phi_{B})) = m\frac{1+\gamma}{c} \ln\left(\frac{r_{A} + r_{B} + R_{AB}}{r_{A} + r_{B} - R_{AB}}\right) \longrightarrow \text{Shapiro, 1964}$$

$$\mathcal{T}^{(2)}(r_{A}, r_{B}, (\phi_{A} - \phi_{B})) = \frac{m^{2}}{c} \frac{R_{AB}}{r_{A} r_{B}} \left[\kappa_{2} \frac{(\phi_{A} - \phi_{B})}{\sin(\phi_{A} - \phi_{B})} - \frac{(1+\gamma)^{2}}{1 + \cos(\phi_{A} - \phi_{B})} \right], \rightarrow \text{Linet \& Teyssandier, 2014}$$

$$\mathcal{T}^{(3)}(r_{A}, r_{B}, (\phi_{A} - \phi_{B})) = \frac{m^{3}}{c} \frac{R_{AB}(r_{A} + r_{B})}{r_{A}^{2} r_{B}^{2} (1 + \cos(\phi_{A} - \phi_{B}))} \left[\kappa_{3} - (1+\gamma)\kappa_{2} \frac{(\phi_{A} - \phi_{B})}{\sin(\phi_{A} - \phi_{B})} + \frac{(1+\gamma)^{3}}{1 + \cos(\phi_{A} - \phi_{B})} \right] \right]$$

$$\mathcal{T}^{(4)}(r_{A}, r_{B}, \mu) = \frac{m^{4}}{c} \frac{R_{AB}}{r_{A}^{3} r_{B}^{3} (1-\mu^{2})^{2}} \left[-(1+\gamma)^{4} \frac{5(2r_{A}^{2} + 2r_{B}^{2} + r_{A} r_{B}(3-\mu))(1-\mu^{2}}{6(1+\mu)} + \kappa_{2}(1+\gamma)^{2} \frac{(2r_{A}^{2} + 2r_{B}^{2} + r_{A} r_{B}(3-\mu))(1-\mu^{2} \arccos \mu}{\sqrt{1-\mu^{2}}} + \kappa_{2}(1+\gamma)^{2} \frac{(2r_{A}^{2} + 2r_{B}^{2} + r_{A} r_{B}(3-\mu))(1-\mu^{2} \arccos \mu}{\sqrt{1-\mu^{2}}} + (1+\gamma)\kappa_{3} \left((1-\mu)\left((r_{A}^{2} + r_{B}^{2})(3-\mu) + 2r_{A} r_{B}(1-3\mu)\right) + R_{AB}^{2}\sqrt{1-\mu^{2}} \operatorname{arccos} \mu\right) + \frac{\kappa_{4}}{2} \left((2r_{A} r_{B} - (r_{A}^{2} + r_{B}^{2})\mu)(1-\mu^{2}) + R_{AB}^{2}\sqrt{1-\mu^{2}} \operatorname{arccos} \mu\right) \right]$$

Synge world function X_ $\Delta \hat{x}$ $\overline{\mathbf{x}}$ Proper time •x' $\tau' = \bar{\tau} + \tau_1 + \tau_2 + \dots$ $\tau_1 = \frac{\bar{r}\Delta r u^r}{2m - \bar{\pi}} + \Delta t E - \Delta \phi L + \rho$ $\tau_2 = -\frac{\Delta r^3 m \left(E^2 \bar{r}^3 - L^2 \bar{r} + 2L^2 m\right)}{2\rho \bar{r}^2 \left(\bar{r} - 2m\right)^3} + \Delta r \left(\frac{\Delta \theta^2 \left(E^2 \bar{r}^3 - L^2 \bar{r} + 4m \bar{r}^2 - 2\bar{r}^3 + 2L^2 m\right)}{4m\rho \bar{r} - 2\rho \bar{r}^2}\right)$ $+\frac{\Delta\phi^{2}\left(\mathrm{E}^{2}\bar{r}^{3}-3L^{2}\bar{r}+4m\bar{r}^{2}-2\bar{r}^{3}+6L^{2}m\right)}{4m\rho\bar{r}-2\rho\bar{r}^{2}}-\frac{\Delta\phi L}{\bar{r}}\right)$ $+\Delta t^{2} \left(\frac{\Delta rm\left(\left(2-3E^{2} \right) \bar{r}^{3} + L^{2} \bar{r} - 4m \bar{r}^{2} - 2L^{2} m \right)}{2\rho \bar{r}^{4} \left(2m - \bar{r} \right)} + \frac{\Delta \phi Lm a^{r}}{2\rho \bar{r}^{2}} - \frac{m a^{r}}{2\bar{r}^{2}} \right)$ $+\Delta t \left(\Delta r \left(\frac{\Delta \phi EL\left(\bar{r}-m\right)}{\rho \bar{r} \left(2m-\bar{r}\right)}+\frac{Em}{r\left(\bar{r}-2m\right)}\right)-\frac{\Delta r^2 Em u^r}{2\rho \left(\bar{r}-2m\right)^2}+\frac{\Delta \theta^2 E \bar{r} u^r}{2\rho}+\frac{\Delta \phi^2 E \bar{r} u^r}{2\rho}\right)-\frac{2\pi c^2 Em u^r}{2\rho}$ $\frac{\Delta t^3 Em u^r}{2\rho \bar{r}^2}$ $+\Delta r^{2} \left(\frac{\Delta \phi L u^{r} \left(2\bar{r}-5m\right)}{2 \rho \left(\bar{r}-2m\right)^{2}} + \frac{m u^{r}}{2 \left(\bar{r}-2m\right)^{2}} \right) + \Delta \theta^{2} \left(\frac{\bar{r} u^{r}}{2} - \frac{\Delta \phi L \bar{r} u^{r}}{2 \rho} \right) - \frac{\Delta \phi^{3} L \bar{r} u^{r}}{2 \rho} + \frac{1}{2} \Delta \phi^{2} \bar{r} u^{r}$ $\rho^2 = (q_{ab}\Delta x^a u^b)^2 + q_{ab}\Delta x^a \Delta x^b$

Simulating null coordinates

Post Minkowskian to Schwarzschild
 Schwarzschild circular orbit

$$\begin{split} t' &= t, \\ r' &= r \left[1 - \frac{r_S}{2r} - \sum_{n=2}^{\infty} \left(\frac{r_S}{2^n r} \right)^n \right], \\ \theta' &= \theta, \\ \phi' &= \phi. \end{split}$$

 $r_{0} =$

 $\phi_0 =$

Baby test

$$r_0 = 4.2 \times 10^7 \text{ m}, \qquad r_P = 5.0 \times 10^7 \text{ m},$$

 $\phi_0 = 0, \qquad \qquad \theta_P = \pi/2,$
 $t_0 = 0. \qquad \qquad \phi_P = 0.$

 $\phi_P =$

υ.

$$t(\tau) = \frac{c}{\sqrt{1 - \frac{3r_s}{r_0}}}\tau + t_0,$$

$$r(\tau) = r_0,$$

$$\theta(\tau) = \frac{\pi}{2},$$

$$\phi(\tau) = \sqrt{\frac{c^2 r_S}{2r_0^3 \left(1 - \frac{3r_s}{2r_0}\right)}}\tau + \phi_0$$

Results

Order	$t_p = 1s \Rightarrow \tau \ [s]$
Delva	0.9733148699
TT(1)	0.9733148699 <mark>9</mark> 343302 <mark>2</mark> 1
TT(3)	0.9733148699 <mark>9</mark> 343312 <mark>6</mark> 9
TT(4)	0.9733148699 <mark>9</mark> 343312 <mark>6</mark> 9
SW(2)	0.9733148699 <mark>9</mark> 349282 <mark>4</mark> 2
SW(5)	0.9733148699 <mark>9</mark> 343312 <mark>1</mark> 4
SW(6)	0.9733148699 <mark>9</mark> 343312 <mark>7</mark> 9

Order	$t_P = 1000s$	$\Rightarrow \tau [s]$
Delva	999.97105	61425
TT(3)	999.97105515	857394
TT(4)	999.97105618	3339852
SW(5)	999.97105607	1208982
SW(6)	999.971056 <mark>0</mark> 71	1208977

Simulating null coordinates

Three satellites

Results

Order	Satellite 1: $t_P = 1s \Rightarrow \tau$ [s]	Order	Satellite 2: $t_P = 1s \Rightarrow \tau$ [s]
TT(4)	0.8776494176161300	TT(4)	0.86381940526182
SW(12)	0.8776494176142050	SW(12)	0.86381940572704
SW(11)	0.87764941759 <mark>63577</mark>	SW(11)	0.86381940 <mark>6</mark> 22337

Order	Satellite 3: $t_P = 1s \Rightarrow \tau$ [s]
TT(4)	0.8800785714457471
SW(12)	0.8800785714471294
SW(11)	0.8800785714474831

Solving inverse problem

 Expand everything! $t_{P,exp} = t_P^{(0)} + \sqrt{\epsilon} t_P^{(1/2)} + \epsilon t_P^{(1)} + \dots + \epsilon^{order} t_P^{(order)},$ $r_{P,exp} = r_P^{(0)} + \sqrt{\epsilon} r_P^{(1/2)} + \epsilon \left(r_P^{(1)} - m \right) + \mathcal{O}(\epsilon^{3/2})$ $t_{i,exp} = \tau + \frac{3m}{2r_0}\tau\epsilon + \mathcal{O}(\epsilon^2),$ $\phi_{P,exp} = \phi_P^{(0)} + \sqrt{\epsilon}\phi_P^{(1/2)} + \epsilon\phi_P^{(1)} + \dots + \epsilon^{order}\phi_P^{(order)}.$ $r_{i,exp} = r_0 - m\epsilon + \mathcal{O}(\epsilon^2),$ $\phi_{i,exp} = \phi_{i,0} + \sqrt{\frac{m}{r_0^3}} \tau \sqrt{\epsilon} + \sqrt{\frac{m^3}{4r_0^5}} 3\tau \epsilon^{3/2} + \mathcal{O}(\epsilon^{5/2})$ $\mu_{i,exp} = \cos\left(\phi_i - \phi_P^{(0)}\right) + \sin\left(\phi_{i,0} - \phi_P^{(0)}\right) \left(\phi_P^{(1/2)} - \sqrt{\frac{m}{r_o^3}}c\tau_i\right)\sqrt{\epsilon}$ $-\left[\cos\left(\phi_{i,0}-\phi_{P}^{(0)}\right)\frac{\left(\sqrt{\frac{4m}{r_{0}}}c\tau_{i}-2r_{0}\phi_{P}^{(1/2)}\right)^{2}}{8r_{0}^{2}}-\sin\left(\phi_{i,0}-\phi_{P}^{(0)}\right)\phi_{P}^{(1)}\right]\epsilon$ $+ \left| \frac{1}{6} \sin \left(\phi_{i,0} - \phi_P^{(0)} \right) \left(\sqrt{\frac{m}{r_0^3}} c \tau_i - \phi_P^{(1/2)} \right)^3 + \cos \left(\phi_{i,0} - \phi_P^{(0)} \right) \left(\sqrt{\frac{m}{r_0^3}} c \tau_i - \phi_P^{(1/2)} \right) \phi_P^{(1)} \right) \right|$ $+\sin\left(\phi_{i,0}-\phi_{P}^{(0)}\right)\left(\phi_{P}^{(3/2)}-\frac{3\left(\frac{2m}{r_{0}}\right)^{3/2}c\tau_{i}}{4\sqrt{2}r_{0}}\right)\right]\epsilon^{3/2}+\mathcal{O}(\epsilon^{2})$

Solving the inverse problem

3 Satellites

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$ \begin{array}{c ccccc} Actual & 1.0 \\ 0 & 1.00000031160543317958931839335 & 3.1161 \times 10^{-8} \\ 0.5 & 0.999999999801722208034042239405 & 1.9828 \times 10^{-10} \\ 1 & 1.0000000000000066805491440617 & 6.6805 \times 10^{-17} \\ 1.5 & 1.00000000000000228863072788 & 2.2886 \times 10^{-19} \\ 2 & 0.99999999999999999999999999999718036 & 2.8196 \times 10^{-25} \\ 2.5 & 1.0000000000000000000000133 & 1.3263 \times 10^{-28} \\ 3 & 1.00000000000000000000000000 & 9.4083 \times 10^{-34} \\ \end{array} $	Order	t_P [s]	Error
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Actual	1.0	
$ 0.5 0.99999999801722208034042239405 1.9828 \times 10^{-10} \\ 1 1.0000000000000066805491440617 6.6805 \times 10^{-17} \\ 1.5 1.000000000000000228863072788 2.2886 \times 10^{-19} \\ 2 0.99999999999999999999999999718036 2.8196 \times 10^{-25} \\ 2.5 1.000000000000000000000000133 1.3263 \times 10^{-28} \\ 3 1.0000000000000000000000000 9.4083 \times 10^{-34} $	0	1.000000031160543317958931839335	3.1161×10^{-8}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5	0.9999999999801722208034042239405	1.9828×10^{-10}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1.00000000000000066805491440617	6.6805×10^{-17}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5	1.000000000000000000228863072788	2.2886×10^{-19}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	0.9999999999999999999999999999718036	2.8196×10^{-25}
3 1.000000000000000000000000000000000000	2.5	1.0000000000000000000000000000133	1.3263×10^{-28}
	3	1.000000000000000000000000000000000000	9.4083×10^{-34}

 -4×10^{7}

Order	$r_P \ [10^6 \ { m m}]$	Error	Order	$\phi_P [\mathrm{rad}]$	Error
Actual	6.3		Actual	$-\pi/6$	
0	6.299989882179941576678355635747	-1.6060×10^{-6}	0	-0.523663456801297482319083172952	1.1235×10^{-4}
0.5	6.30000000935775873822418454687	1.4854×10^{-10}	0.5	-0.523598775560885789129469487053	-7.1454×10^{-11}
1	6.2999999999999993758182253996945	9.9076×10^{-16}	1	-0.523598775598309328734082371606	1.9969×10^{-14}
1.5	6.29999999999999999943035047465108	9.0421×10^{-18}	1.5	-0.523598775598298889248115917379	3.0884×10^{-17}
2	6.3000000000000000000000025068941	3.9792×10^{-24}	2	-0.523598775598298873077052496507	1.0453×10^{-22}
2.5	6.2999999999999999999999999999973536	4.2006×10^{-27}	2.5	-0.523598775598298873077107223789	1.2906×10^{-26}
3	6.3000000000000000000000000000000000000	4.7364×10^{-32}	3	-0.523598775598298873077107230547	1.6206×10^{-32}

0	1.047149706632208449047833646793	04.5688×10^{-3}
0.5	1.047197570905738944132225900057	1.8821×10^{-8}
1	1.047197551194164173407845979193	2.3239×10^{-12}
1.5	1.047197551196597732537859875917	1.3003×10^{-17}
2	1.047197551196597746256002605638	9.7201×10^{-20}
2.5	1.047197551196597746154180690784	3.2248×10^{-23}
3	1.047197551196597746154214468106	6.6967×10^{-27}

Order	$r_P \ [10^6 \ m]$	Error	Order	t_P [s]	Error
Actual	6.3		Actual	1.0	
0	6.297991095761440172150549624619	3.1887×10^{-4}	0	1.000004726525898470419881664511	4.7265×10^{-6}
0.5	6.299999628817188546413163437225	5.8918×10^{-8}	0.5	1.00000000317128497477299209190	3.1713×10^{-10}
1	6.299999999954395965929765837974	7.2387×10^{-12}	1	1.00000000000068448219616118322	6.8448×10^{-14}
1.5	6.29999999999999990124720349620199	1.5675×10^{-15}	1.5	1.000000000000000004276567159170	4.2766×10^{-18}
2	6.299999999999999999998562785122411	2.2813×10^{-19}	2	1.000000000000000000000289690092	2.8969×10^{-22}
2.5	6.299999999999999999999999734428831	$4.2154 imes 10^{-23}$	2.5	0.9999999999999999999999999999999999	$1.0990 imes 10^{-25}$
3	6.2999999999999999999999999999941663	9.2599×10^{-27}	3	0.9999999999999999999999999999999999	3.3013×10^{-29}

Solving the inverse problem

Elliptic orbits – equations of motion

Solving the inverse problem

Order	$\phi_P [\mathrm{rad}]$	Error
Actual	2.617993877991494411361372840474	
0	2.617433575705034511049060737423	2.1401×10^{-3}
1	2.617993718180396219341713036414	6.1043×10^{-8}
2	2.617993878016665537549958414726	9.6147×10^{-12}
3	2.617993877991538123347549284001	1.6714×10^{-14}

Still to come

- Time transfer method applied to inclined eccentric orbits in solving the inverse problem
- Use Synge world function to produce null coordinates for eccentric orbits
- Determine whether Synge world function is applicable to the inverse problem
- Develop ABC system with these semi-analytic solutions
- Determine whether applicable to real world systems, e.g. the metric used in Andreja Gomboc's talk
- Compare with Andreja and Uros's numerical method
- Read off gravitational parameters
- Applications in relativistic astrophysics???